期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

Journal of Engineering Research. 2025; 4: (9) ; 77-81 ; DOI: 10.12208/j.jer.20250410.

Research on visual inspection methods for corrosion degree of bridge steel components
桥梁钢构件腐蚀程度的视觉检测方法研究

作者: 袁瀛飞 *

河北道桥工程检测有限公司 河北石家庄

*通讯作者: 袁瀛飞,单位:河北道桥工程检测有限公司 河北石家庄;

发布时间: 2025-12-31 总浏览量: 105

摘要

沿海桥梁在盐雾、振动与荷载交互环境下易出现早期锈蚀,传统人工检测效率低、精度差。为实现腐蚀程度的可视化识别与规范化分级,本文提出一种融合多平台拍摄、深度学习分割与三维指标判定的视觉检测方法。构建由无人机与磁吸爬行机器人组成的采集系统,采用Corro-U²-Net模型实现腐蚀区域的高精度掩膜提取,并引入锈蚀占比R、蚀坑深度指数D与表面形貌熵H构建等级评估体系,结合支持向量机实现规范对应。在跨湾大桥200m试验段实测中,像素级IoU达0.87,等级一致率达91%,较现有方法提升显著,并在养护费用与决策效率上体现出良好工程适应性。

关键词: 钢桥腐蚀;视觉检测;轻量化网络;三维量化指标;养护决策闭环

Abstract

Coastal Bridges are prone to early rusting under the interaction of salt spray, vibration and load. Traditional manual detection is inefficient and inaccurate. To achieve visual identification and standardized classification of corrosion degrees, this paper proposes a visual inspection method that integrates multi-platform shooting, deep learning segmentation and three-dimensional index determination. A acquisition system composed of unmanned aerial vehicles (UAVs) and magnetic crawling robots was constructed. The Corro-U²-Net model was adopted to achieve high-precision mask extraction in the corrosion area. The rust proportion R, crater depth index D and surface topography entropy H were introduced to build a grade evaluation system, and the support vector machine was combined to achieve specification correspondence. In the actual measurement of the 200-meter test section of the Cross-Bay Bridge, the pixel-level IoU reached 0.87, and the grade consistency rate was 91%, which was significantly improved compared with the existing methods. Moreover, it demonstrated good engineering adaptability in terms of maintenance costs and decision-making efficiency.

Key words: Corrosion of steel bridges; Visual inspection; Lightweight network; Three-dimensional quantitative indicators; Maintenance decision-making closed loop

参考文献 References

[1] 舒昕,钟继卫,吴运宏,杜君,李晓行.基于深度学习的钢结构桥梁高强螺栓群松动病害识别研究[J].世界桥梁,1-9.

[2] 王亦君,蒋首超.基于计算机视觉的钢构件防腐涂层缺陷检测[J].建筑钢结构进展,2023,25(12):85-93+101.

[3] 何润,周世康,刘璇,张勇,王文成.跨海桥梁的钢筋混凝土结构劣化机理与防护策略分析[J].公路工程,2025,50(02): 34-52+94.

[4] 徐向东,罗玉林,张剑锋.钢桁架桥梁病害检测养护的现状及趋势分析[J].四川建筑,2024,44(06):271-273.

[5] 贾维杰.公路桥梁养护管理及危桥加固改造技术分析[J].散装水泥,2024,(06):92-94+97.

[6] 周晓光,侯超,李威.海工钢管混凝土腐蚀损伤特征及其智能评估方法[J].建筑结构学报,2024,45(S1):304-315.

[7] 刘明.基于支持向量机的桥梁钢构件使用寿命预测研究[J].新城建科技,2024,33(06):158-160.

[8] 姚志东,卢佳祁,熊梦雅,卢炜.基于计算机视觉的钢结构表面缺陷智能识别研究综述[J].建筑结构,2023,53(24): 126-135.

引用本文

袁瀛飞, 桥梁钢构件腐蚀程度的视觉检测方法研究[J]. 工程学研究, 2025; 4: (9) : 77-81.