摘要
火车快速定量装车系统在C70/C80大标载车型装车作业时,缓冲仓煤量存在短时波动大、供需失衡的问题。针对此问题,提出一种基于多源信息融合的期望给煤量模型。该模型首次将缓冲仓煤量、带式输送机缓存煤量、装车进度、列车编组信息进行在线融合,构建了以时间为自变量、期望给煤量为因变量的分段解析函数,作为上游给料控制系统的实时跟踪目标。工业试验结果表明,期望给煤量模型较传统“仓位-阈值”策略,平均装车时间由65秒/节缩短至58秒/节,给煤机启停次数由3次/列降至1次/列,显著提升了装车效率与设备寿命。
关键词: 快速定量装车系统;缓冲仓煤量;多源信息融合;期望给煤量模型
Abstract
During the loading operation of C70/C80 large-rated-load freight cars with the rapid quantitative train loading system, the coal volume in the buffer bin suffers from large short-term fluctuations and supply-demand imbalance. To address this problem, an expected coal feeding rate model based on multi-source information fusion is proposed. For the first time, this model performs online fusion of the coal volume in the buffer bin, the cached coal volume on the belt conveyor, loading progress, and train marshalling information, and constructs a piecewise analytical function with time as the independent variable and the expected coal feeding rate as the dependent variable, which serves as the real-time tracking target for the upstream feeding control system. Industrial test results show that compared with the traditional "bin level-threshold" strategy, the expected coal feeding rate model reduces the average loading time per car from 65 seconds to 58 seconds and the number of start-stop cycles of the coal feeder from 3 times per train to 1 time per train, significantly improving loading efficiency and equipment service life.
Key words: Rapid quantitative train loading system; Coal volume in the buffer bin; Multi-source information fusion; Expected coal feed rate model
参考文献 References
[1] 韩峰,胡希鹏,张鹏,等.火车智能化快速定量装车系统研究[J].自动化应用,2025,66(03):214-216.
[2] 刘海瑞.选煤厂智能定量快速装车系统优化[J].机械研究与应用,2024,37(03):181-183.
[3] 刘飞,张乐群,潘红光,等.带式输送机煤量检测技术及其发展趋势[J].中国煤炭,2023,49(09):77-83.
[4] 陈书航,王世博,葛世荣,等.综采工作面刮板输送机煤流时空分布研究[J].工矿自动化,2024,50(09):98-107.
[5] 希都日古,于昕,常文峰,等.煤炭快速定量装车站精准装料控制系统设计[J].煤炭工程,2023,55(05):14-19.
[6] 武徽,李旭.快速定量装车系统自适应配料控制研究[J].煤矿机械,2020,41(10):33-36.
[7] 吕玮,段明坤,王瑞,等.精确快速定量装车系统现状及发展分析[J].科技与创新,2023,(16):64-66.
[8] 尹瑞,张冬雪,倪强.基于数组的刮板输送机运载模型及煤量计算算法研究[J].工矿自动化,2024,50(08):84-90.