期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

Journal of Engineering Research. 2025; 4: (9) ; 6-17 ; DOI: 10.12208/j.jer.20250393.

Research on the first-ply failure pressure of thermoplastic composite flexible pipe
热塑性复合材料柔性管的首层失效压力研究

作者: 时晨 1,2 *, 王森 3

1 深圳清华大学研究院 广东深圳
2 青岛哈尔滨工业大学(威海)研究院 山东青岛

3 威海纳川管材有限公司 山东威海

*通讯作者: 时晨 ,单位: 深圳清华大学研究院 广东深圳 青岛哈尔滨工业大学(威海)研究院 山东青岛;

发布时间: 2025-12-30 总浏览量: 83

摘要

热塑性复合材料柔性管(Thermoplastic Composite Flexible Pipe, TCFP)是一种完全非金属纤维增强复合材料管道,具有轻质高强、抗疲劳、耐腐蚀等综合优势,是金属增强柔性管的潜在替代品。为系统评估其承压性能,研究基于三维各向异性弹性理论与最小势能原理,建立了TCFP在内压下的应力-应变场理论模型,并通过Abaqus建立精细化有限元模型进行对比验证,结果表明理论模型与有限元模型在应力分布上具有较好的一致性。进一步结合改进的Hashin失效准则,分析了抗拉层与抗压层的缠绕角度和相对厚度对首层失效压力的影响。通过对847组参数组合的系统计算,得到了以下结论:(1)随着抗拉层与抗压层的厚度比的增大,抗拉层和抗压层的最佳缠绕角度的总体趋势也在增大;(2)失效位置均位于抗压层,约89%为基体拉伸失效;(3)提高抗压层基体拉伸强度是提升TCFP首层失效压力的有效途径。本研究为TCFP的结构设计与性能优化提供了理论依据与分析手段,对其工程应用具有一定的参考价值。

关键词: 热塑性复合材料柔性管;理论模型;有限元;失效准则;首层失效压力

Abstract

The Thermoplastic Composite Flexible Pipe (TCFP) is a fully-non-metallic, fiber-reinforced composite pipe. It offers a combination of lightweight structure, high strength, excellent fatigue resistance, and superior corrosion resistance, making it a promising alternative to conventional unbonded flexible pipes. To evaluate its pressure-bearing capacity, this study established a theoretical model for the stress-strain distribution of TCFP under internal pressure. This model is formulated based on three-dimensional anisotropic elasticity theory and the principle of minimum potential energy. Its accuracy is validated through comparison with a refined finite element model developed in Abaqus, showing good agreement across the stress field. Further, by incorporating a modified Hashin failure criterion, this study examines the influence of the winding angles and relative layer thicknesses of the tensile and pressure armor layers on the first-ply failure pressure. A systematic evaluation of 847 parameter configurations yields the following findings: (1) As the thickness ratio of the tensile armor layers to the pressure armor layer increases, the optimal winding angles of both armor layers exhibit an overall increasing trend. (2) Failure consistently occurs in the pressure armor layer, with approximately 89% attributed to matrix tensile failure. (3) Increasing the matrix tensile strength of the pressure armor layer effectively enhances the first-ply failure pressure of TCFP. This work provides a theoretical basis and analytical framework for the structural design and performance optimization of TCFP, offering guidance for its engineering application.

Key words: Thermoplastic composite flexible pipe; Theoretical model; Finite element; Failure criterion; First-ply failure pressure

参考文献 References

[1] ROSENOW M W K. Wind angle effects in glass fibre-reinforced polyester filament wound pipes [J]. Composites, 1984, 15(2): 144-52.

[2] WILD P M, VICKERS G W. Analysis of filament-wound cylindrical shells under combined centrifugal, pressure and axial loading [J]. Composites Part A: Applied Science and Manufacturing, 1997, 28(1): 47-55.

[3] KRUIJER M P, WARNET L L, AKKERMAN R. Analysis of the mechanical properties of a reinforced thermoplastic pipe (RTP) [J]. Composites Part A: Applied Science and Manufacturing, 2005, 36(2): 291-300.

[4] XIA M, TAKAYANAGI H, KEMMOCHI K. Analysis of multi-layered filament-wound composite pipes under internal pressure [J]. Composite Structures, 2001, 53(4): 483-91.

[5] XING J, GENG P, YANG T. Stress and deformation of multiple winding angle hybrid filament-wound thick cylinder under axial loading and internal and external pressure [J]. Composite Structures, 2015, 131: 868-77.

[6] SHI C, XIA H, WANG J, et al. Partially-plastic theoretical model of thermoplastic composite pipes and comparison of composite failure criteria [J]. Composite Structures, 2022, 280: 114834.

[7] 王宏伟, 时晨, 彭传远, et al. 热塑复合管单角度与多角度铺层截面设计研究 [J]. 石油机械, 2022, 50(11): 50-7.

[8] BAKAIYAN H, HOSSEINI H, AMERI E. Analysis of multi-layered filament-wound composite pipes under combined internal pressure and thermomechanical loading with thermal variations [J]. Composite Structures, 2009, 88(4): 532-41.

[9] HASTIE J C, KASHTALYAN M, GUZ I A. Failure analysis of thermoplastic composite pipe (TCP) under combined pressure, tension and thermal gradient for an offshore riser application [J]. International Journal of Pressure Vessels and Piping, 2019, 178: 103998.

[10] 董磊磊. 非粘合柔性立管截面特性的理论计算及BSR区域的疲劳分析 [D]; Dalian University of Technology, China, 2013.

[11] FARHOOD N, SINGAL A. Prediction of First Ply Failure of Composite Pressure Vessels Under Internal Pressure: A review [J]. Anbar Journal of Engineering Science, 2022, 13(1): 76-84.

[12] TSAI S W, WU E M. A general theory of strength for anisotropic materials [J]. Journal of composite materials, 1971, 5(1): 58-80.

[13] AZZI V, TSAI S W. Anisotropic strength of composites: Investigation aimed at developing a theory applicable to laminated as well as unidirectional composites, employing simple material properties derived from unidirectional specimens alone [J]. Experimental mechanics, 1965, 5(9): 283-8.

[14] HOFFMAN O. The brittle strength of orthotropic materials [J]. Journal of Composite materials, 1967, 1(2): 200-6.

[15] CHAMISI C C. Failure criteria for filamentary composites; proceedings of the 1969 Symposium on Composite Materials: Testing and Design, February 11, 1969 - February 13, 1969, New Orleans, LA, United states, F, 1969 [C]. ASTM International.

[16] HASHIN Z. Fatigue failure criteria for unidirectional fiber composites [J]. Journal of Applied Mechanics, Transactions ASME, 1981, 48(4): 846-52.

[17] OLMEDO A, SANTIUSTE C. On the prediction of bolted single-lap composite joints [J]. Composite Structures, 2012, 94(6): 2110-7.

[18] BREWER J C, LAGACE P A. Quadratic stress criterion for initiation of delamination [J]. Journal of composite materials, 1988, 22(12): 1141-55.

[19] PUCK A, SCHURMANN H. Failure analysis of FRP laminates by means of physically based phenomenological models [J]. Composites Science and Technology, 2002, 62(12-13 SPECIAL ISSUE): 1633-62.

引用本文

时晨, 王森, 热塑性复合材料柔性管的首层失效压力研究[J]. 工程学研究, 2025; 4: (9) : 6-17.