摘要
利用电子光学仿真软件CST模拟设计了一种超小型光离子成像仪,在仿真中采用单透镜聚焦系统对离子进行聚焦。同时,模拟了离子在离子聚焦透镜中的飞行轨迹,仿真分析了离子透镜的能量分辨率,结果表明:相同位置不同速度的离子在MCP处位于同一圆环,相同速度不同位置的离子在MCP处汇聚于一点,离子透镜的能量分辨率高于4%,满足光解动力学等应用领域离子速度成像仪对超小型离子透镜的应用需求。
关键词: 离子透镜;单透镜聚焦系统;速度分辨率;能量分辨率
Abstract
The design of a miniaturized optical ion imager was simulated using the electronic optical simulation software CST. In the simulation, a single lens focusing system was employed to concentrate the electrons. Additionally, the flight trajectories of ions within the ion focusing lens were simulated, and the velocity resolution and energy resolution of ion velocity imaging were analyzed. The results indicated that the energy resolution exceeds 4%, while the velocity resolution exceeds 2%. These findings meet the application requirements for miniaturized ion lenses in fields such as photodissociation dynamics.
Key words: Ion lens; Single-lens focusing system; Velocity resolution; Energy resolution
参考文献 References
[1] 喻杰.直流切片速度影像仪的研制及其在CH3C1强场解离中的应用[D].华中科技大学,2023.
[2] Mao R, Xiao H, Hu Y, et al. Photodissociation dynamics of dichlorodifluoromethane (CF2Cl2) around 235 nm using time-sliced velocity map imaging technology[J]. Chinese Journal of Chemical Physics, 2019, 32(4): 406-410.
[3] Yan Y-H, Liu Y-Z, Ding P-F, et al. Multiphoton ionization dissociation dynamics of iodoethane studied with velocity map imaging technique[J]. Acta Physica Sinica, 2018, 67(20): 203301.
[4] Li F-F, Ma Y-J, Liu J-X, et al. Photodissociation dynamics of AlO at 193 nm using time-sliced ion velocity imaging[J]. Chinese Journal of Chemical Physics, 2020, 33(5): 649-652.
[5] Zhang G-D, Guan L-C, Yan Z-F, et al. A three-dimensional velocity-map imaging setup designed for crossed ion-molecule scattering studies[J]. Chinese Journal of Chemical Physics, 2021, 34(1): 71-80.
[6] 刘玉柱,肖韶荣,夏俊荣,苏静,敖旷.一种低电场光电子成像仪:201610597107.8[P], 2018.04.13.
[7] 张棋, 王国栋, 王进伟, 林云龙, 伊明辉, 李涛, 唐振宇. 小型离子源中膜孔静电透镜系统仿真研究[J]. 真空科学与技术学报, 2021, 41(1): 35-39.
[8] Tian L, Shen L, Chen L, et al. A New Design of Large-format Streak Tube with Single-lens Focusing System[J]. Measurement Science Review, 2021, 21(6): 191-196.