摘要
随着智能电网建设的深入推进,输配电工程中电力负荷的精准预测与高效管理已成为保障电力系统安全、经济运行的关键环节。本文围绕输配电工程中的电力负荷预测与管理展开研究,系统分析了常用负荷预测方法的原理与应用场景,结合智能算法与传统模型提出改进预测方案,并构建了基于大数据的负荷管理体系。通过引入时间序列模型与机器学习算法,建立了负荷预测的数学模型,以某地区电网为例进行实证分析,验证了方法的有效性。研究结果表明,融合多源数据的预测模型可将负荷预测误差控制在5%以内,基于需求侧响应的管理策略能显著提升电网运行效率。本文研究为输配电工程的负荷管理提供了理论参考与实践指导。
关键词: 输配电工程;电力负荷预测;时间序列分析;需求侧管理;智能算法
Abstract
With the deepening of smart grid construction, the accurate prediction and efficient management of power load in power transmission and distribution projects have become the key link to ensure the safe and economical operation of the power system. This paper focuses on the research on power load forecasting and management in power transmission and distribution engineering, systematically analyzes the principles and application scenarios of common load forecasting methods, proposes improved prediction schemes based on intelligent algorithms and traditional models, and constructs a load management system based on big data. By introducing the time series model and machine learning algorithm, a mathematical model of load forecasting is established, and the empirical analysis is carried out by taking a regional power grid as an example to verify the effectiveness of the method. The results show that the prediction model fusing multi-source data can control the load prediction error within 5%, and the management strategy based on demand-side response can significantly improve the operation efficiency of the power grid. This paper provides a theoretical reference and practical guidance for the load management of power transmission and distribution engineering.
Key words: Power transmission and distribution engineering; Power load forecasting; Time series analysis; Demand-side management; Intelligent algorithms
参考文献 References
[1] 苏群.新型电力系统下电网投资项目风险预警模型及应用研究[D].华北电力大学(北京),2023.
[2] 钟海旺,张宁,杜尔顺,等.新型电力系统中的规划运营与电力市场:研究进展与科研实践[J].中国电机工程学报, 2024, 44(18):7084-7103.
[3] 曾君,谭豪杰,刘俊峰,等.基于状态势博弈的微电网能量管理优化算法研究[J].电力系统保护与控制, 2025, 53(5): 24-34.
[4] 冯松杰,魏韡.考虑新能源消纳和电力保供的电力系统多时间尺度平衡方法[J].电力系统自动化, 2025, 49(4):128-140.
[5] 魏级明.基于深度学习的通信网络监控数据集成系统设计[J].通信电源技术, 2025, 42(1):46-48.
[6] 章涂义,刘三民.基于GBDT和双层漂移检测的用户评论分类算法[J].湖北民族大学学报(自然科学版), 2025, 43(1):60-66.
[7] 葛亚明,周陈斌,孟屹华,等.基于多源信息融合的输电线路故障诊断研究[J].电气传动, 2025(4).
[8] 郑仙蓉,陈甚逾,李嘉彬,等.大数据分析在电力用户需求响应中的应用研究[J].电力设备管理, 2025(1):244-246.