摘要
随着网络攻击手段的不断演进,传统的恶意流量检测方法已难以满足复杂环境下的安全需求。基于深度学习的恶意流量检测技术,通过自动提取数据特征和多层次模式识别,显著提升了检测的准确性与实时性。本文围绕深度学习模型在恶意流量识别中的应用,探讨了多种主流网络攻击场景下的检测策略及其防御机制。研究表明,结合深度神经网络的智能分析方法不仅能有效识别复杂攻击,还能动态调整防御策略,实现对恶意流量的高效防护,推动网络安全防御技术向智能化发展迈进。
关键词: 深度学习;恶意流量检测;网络安全;智能防御;异常检测
Abstract
As cyber attack methods continue to evolve, traditional malicious traffic detection techniques have become inadequate for the security requirements in complex environments. Deep learning-based malicious traffic detection technology significantly enhances accuracy and real-time performance through automatic data feature extraction and multi-level pattern recognition. This paper focuses on the application of deep learning models in malicious traffic identification, exploring detection strategies and defense mechanisms under various mainstream network attack scenarios. The study shows that intelligent analysis methods combining deep neural networks can not only effectively identify complex attacks but also dynamically adjust defense strategies, achieving efficient protection against malicious traffic and advancing cybersecurity defense technology towards smarter development.
Key words: Deep learning; Malicious traffic detection; Network security; Intelligent defense; Anomaly detection
参考文献 References
[1] 王甜甜,鲍丽,刘圆圆,等.基于三维卷积神经网络的肺结核活动性分级CT辅助诊断模型的构建[J/OL].分子影像学杂志,1-7[2025-05-19].
[2] 王恩慈,卓力,李艳萍,等.基于关系网络的中医舌色苔色协同分类方法[J/OL].世界科学技术-中医药现代化,1-11[2025-05-19].
[3] 邱涛,吴倩,张艳艳.基于时谱域融合与时序自注意力增强的无监督遥感云层遮挡图像修复[J/OL].计算机系统应用,1-13[2025-05-19].
[4] 韩秀花,李辉.人工智能适应性攻击博弈与量子纠错优化模型研究[J].中国宽带,2025,21(05):154-156.
DOI:10.20167/j.cnki.ISSN1673-7911.2025.05.52.
[5] 姚驰.基于人工智能的网络安全威胁检测与防御策略研究[J].中国宽带,2025,21(05):52-54.
[6] 张浩和,韩刚,杨甜甜,等.工业互联网中融入域适应的混合神经网络加密恶意流量检测[J].信息安全研究,2025, 11(05):457-464.
[7] 杨春雨,吴奉燃,温涵,等.加密恶意流量检测系统[J].网络安全技术与应用,2025,(04):53-56.
[8] 田睿,张雅勤,董伟,等.机器学习在恶意加密流量检测中的应用及研究[J].电子技术应用,2025,51(04):1-11.