期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

Journal of Engineering Research. 2025; 4: (4) ; 126-128 ; DOI: 10.12208/j.jer.20250186.

The application of deep learning methods in Real-Time tool wear monitoring in intelligent CNC machining systems
智能数控加工系统中深度学习方法在刀具磨损实时监测的应用

作者: 李厚亮 *

沈阳海泰科里德智能装备制造有限公司 辽宁沈阳

*通讯作者: 李厚亮,单位:沈阳海泰科里德智能装备制造有限公司 辽宁沈阳;

发布时间: 2025-04-10 总浏览量: 6

摘要

智能数控加工系统中,刀具磨损监测对保障加工质量和效率至关重要。传统监测方法存在精度低、实时性差等局限,难以满足现代高效加工需求。深度学习技术凭借强大的特征提取和模式识别能力,为刀具磨损监测提供了新思路。通过构建深度学习模型,结合多源数据训练与验证,可实现高精度实时监测,显著提升加工过程的智能化水平。未来,随着技术的不断发展,深度学习在刀具磨损监测中的应用将更加广泛,有望进一步推动制造业的智能化转型。

关键词: 深度学习;智能数控加工;刀具磨损;实时监测;模型优化

Abstract

In intelligent CNC machining systems, tool wear monitoring is crucial for ensuring machining quality and efficiency. Traditional monitoring methods suffer from limitations such as low accuracy and poor real-time performance, which fail to meet the demands of modern high-efficiency machining. Deep learning technology, with its powerful feature extraction and pattern recognition capabilities, offers new approaches for tool wear monitoring. By constructing deep learning models and validating them with multi-source data training, high-precision real-time monitoring can be achieved, significantly enhancing the intelligence level of the machining process. In the future, as technology continues to advance, the application of deep learning in tool wear monitoring will become more widespread, and is expected to further promote the intelligent transformation of the manufacturing industry.

Key words: Deep learning; Intelligent CNC machining; Tool wear; Real-Time monitoring; Model optimization

参考文献 References

[1] CIMT2025数控系统展品预览[J].金属加工(冷加工),2025,(02):42-44.

[2] 姚玉保,赵剑波.航空制造智能化技术与装备的探讨[J].中国战略新兴产业,2025,(03):101-103.

[3] 王化成,房海波,张洪岩,等.基于BIM的数字化智能加工技术研究[J].建筑施工,2024,46(12):2033-2036.

[4] 张丽丽,赵科学,陶林.多轴加工编程技术与智能机床[M].化学工业出版社:202406.219. 

[5] 李芸.智能制造技术在数控加工中的应用[J].农业工程与装备,2024,51(02):13-15.

[6] 于杰,韩伟娜,李志杰.智能数控机床与编程[M].化学工业出版社:202404.298. 

[7] 乐俊,王崇宵,彭卫,等.智能钢筋数控集中加工中心在白云机场中的应用[C]//《施工技术》杂志社,亚太建设科技信息研究院有限公司.2023年全国土木工程施工技术交流会论文集(下册).中建三局集团有限公司;广东省机场管理集团有限公司;,2023:239-242.

[8] 卜海阔.智能数控钢筋加工设备在工程施工中的应用[J].工程技术研究,2023,8(24):101-103.

引用本文

李厚亮, 智能数控加工系统中深度学习方法在刀具磨损实时监测的应用[J]. 工程学研究, 2025; 4: (4) : 126-128.