摘要
工业生产迈向智能化之际,质量控制与优化需求迫切。本研究运用深度学习技术,深度剖析工业流程数据。借助其精准的模式识别能力,构建模型监测生产异常、预测质量走势并优化工艺。从海量数据中提取关键特征,实现次品的提前预警,动态调控生产参数,有效提升产品质量,降低成本,为工业升级筑牢根基,增强企业市场竞争力。
关键词: 深度学习;工业过程;质量控制;工艺优化;智能生产
Abstract
As industrial production moves towards intelligence, the need for quality control and optimization is urgent. This study employs deep learning technology to deeply analyze industrial process data. Leveraging its precise pattern recognition capabilities, it constructs models to monitor production anomalies, predict quality trends, and optimize processes. By extracting key features from massive datasets, it achieves early warnings of defective products, dynamically adjusts production parameters, effectively improves product quality, reduces costs, and lays a solid foundation for industrial upgrading, enhancing corporate market competitiveness.
Key words: Deep learning; Industrial process; Quality control; Process optimization; Intelligent production
参考文献 References
[1] 张来平,张传科,卢锴.制造业关键过程质量控制能力提升研究[J].电子质量,2025,(01):86-89.
[2] 江峰.浅析工业厂房建筑电气施工质量管理[J].散装水泥,2024,(05):148-150.
[3] 覃壮.基于工业互联网背景下汽车发动机装配过程质量控制研究[J].时代汽车,2024,(04):31-33.
[4] 张福琪.工业用精密硬质合金制品生产过程中的质量控制与改进研究[J].中国金属通报,2024,(01):157-159.
[5] 王云峰,廖祥红,鲍方刚,等.工业厂房钢结构施工技术及质量控制研究[J].中国建筑装饰装修,2024,(01):168-170.
[6] 刘明亮,郑义,黄鹏.工业建筑工程施工全过程质量管理研究[J].中国建筑装饰装修,2023,(07):113-115.
[7] 张杰淳.工业管道安装过程的质量控制与管理分析[J].质量与市场,2022,(17):136-138.
[8] 胡善群.海洋石油平台工艺管线安装技术及质量控制[J].清洗世界,2022,38(05):35-37.