期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

Journal of Engineering Research. 2025; 4: (2) ; 188-200 ; DOI: 10.12208/j.jer.20250085.

Analysis of damage characteristics of basalt fiber reinforced concrete slabs under polymer protection
高聚物防护下玄武岩纤维混凝土板的动态毁伤特性分析

作者: 赵鹏1, 赵小华2 *, 雷建伟2, 董家修2, 冯磊1, 马辉1, 韩泽军3, 李策4, 赵浥辰5

1郑州安源工程技术有限公司 河南郑州

2郑州大学水利与交通学院 河南郑州

3广东工业大学土木与交通工程学院 广东广州

4中国矿业大学(北京) 北京

5周口龙兴公路工程有限公司 河南周口

*通讯作者: 赵小华,单位:郑州大学水利与交通学院 河南郑州;

发布时间: 2025-02-27 总浏览量: 53

摘要

在混凝土中掺入玄武岩纤维虽可提升抗爆性能,但其在水下爆炸下的毁伤程度仍较显著,需进一步优化防护措施。迎爆面设置牺牲防护层是一种高效方法,而高聚物材料因其成型迅速、密度低、吸能效果佳,在抗爆领域具有潜在优势。制作了玄武岩纤维混凝土板试件,开展空中与水下接触爆炸试验,获取毁伤形态;建立了玄武岩纤维混凝土板接触爆炸数值模型并验证了其有效性。随后在模型中设置高聚物牺牲层,分析了不同厚度和不同装药质量下混凝土的毁伤形态、吸能特性及损伤体积分数,结果发现高聚物牺牲层可吸收66%-84%的爆轰能量,显著降低冲击波能量及应力集中,毁伤模式由贯穿裂缝转为局部剥落,有效减轻爆炸荷载对混凝土板的毁伤。

关键词: 接触爆炸;高聚物材料;爆炸防护;混凝土板;毁伤特性

Abstract

Although incorporating basalt fibers into concrete can improve its blast resistance, the damage level remains significant under underwater explosions, necessitating further optimization of protective measures. Placing a sacrificial protective layer on the blast-facing surface is an effective approach, and polymeric materials exhibit potential advantages in blast mitigation due to their rapid formability, low density, and excellent energy absorption properties. In this thesis, basalt fiber-reinforced concrete slab specimens were prepared, and contact explosion tests under both air and underwater conditions were conducted to assess damage patterns. A numerical model for the basalt fiber-reinforced concrete slab under contact explosion was established and validated. Subsequently, a polymeric sacrificial cladding was introduced into the model, and the damage morphology, energy absorption characteristics, and damage volume fraction of the concrete were analyzed under varying layer thicknesses and charge masses.The results demonstrate that the polymeric sacrificial cladding can absorb 66%–84% of the detonation energy, significantly reducing shockwave energy and stress concentration. The failure mode shifts from penetrating cracks to localized spalling, effectively mitigating blast-induced damage to the concrete slab. These findings provide valuable insights for the design of blast-resistant composite structures.

Key words: Contact explosion; Polymer materials; Blast protection; Concrete slab; Damage characteristics

参考文献 References

[1] Rebelo H B, Cismasiu C. Robustness assessment of a deterministically designed sacrificial cladding for structural protection[J]. Engineering Structures, 2021, 240: 112279.

[2] 杨程风, 闫俊伯, 刘彦, et al. 接触爆炸载荷下波纹钢加固钢筋混凝土板毁伤特征分析[J]. 北京理工大学学报, 2022, 42(5): 453-462.

[3] Cao K, Fu Q, Zhang J, et al. Study on the protection mechanism and damage grade prediction of different corrugated steel‒concrete composite structures under underwater contact explosion[J]. Ocean Engineering, 2024, 292: 116520.

[4] Wang W, Huo Q, Yang J, et al. Damage analysis of POZD coated square reinforced concrete slab under contact blast[J]. Defence Technology, 2022, 18(9): 1715-1726.

[5] Liu Y, Wang P, Jin F, et al. Blast responses of polyurea-coated concrete arches[J]. Archives of Civil and Mechanical Engineering, 2021, 21(1): 30.

[6] Xia Y, Wu C, Liu Z, et al. Protective effect of graded density aluminium foam on RC slab under blast loading – An experimental study[J]. Construction and Building Materials, 2016, 111: 209-222.

[7] Zhou Y, Wang T, Zhu W, et al. Evaluation of blast mitigation effects of hollow cylindrical barriers based on water and foam[J]. Composite Structures, 2022, 282: 115016.

[8] Liu S, Zhao X, Fang H, et al. Study on the protective performance of polymer layer to RC slabs under underwater explosions[J]. Ocean Engineering, 2023, 282: 114997.

[9] Codina R, Ambrosini D, Borbón F. Alternatives to prevent the failure of RC members under close-in blast loadings[J]. Engineering Failure Analysis, 2016, 60: 96-106.

[10] Kostopoulos V, Kalimeris G, Giannaros E. Blast protection of steel reinforced concrete structures using composite foam-core sacrificial cladding[J]. Composites Science and Technology, 2022, 230: 109330.

[11] Zhao H, Yu H, Yuan Y, et al. Blast mitigation effect of the foamed cement-base sacrificial cladding for tunnel structures[J]. Construction and Building Materials, 2015, 94: 710-718.

[12] Ousji H, Belkassem B, Louar M, et al. Air-blast response of sacrificial cladding using low density foams: Experimental and analytical approach[J]. International Journal of Mechanical Sciences, 2017, 128-129: 459-474.

[13] Jamil A, Guan Z, Cantwell W, et al. Blast response of aluminium/thermoplastic polyurethane sandwich panels – experimental work and numerical analysis[J]. International Journal of Impact Engineering, 2019, 127: 31-40.

[14] Riedel W, Kawai N, Kondo K. Numerical assessment for impact strength measurements in concrete materials[J]. International Journal of Impact Engineering, 2009, 36(2): 283-293.

[15] 赵小华, 刘树参, 方宏远, et al. 水下接触爆炸下高聚物层对钢筋混凝土板的防护效果[J]. 爆炸与冲击, 2023, 43(12): 110-124.

[16] Zhao C, Lu X, Wang Q, et al. Experimental and numerical investigation of steel-concrete (SC) slabs under contact blast loading[J]. Engineering Structures, 2019, 196: 109337.

[17] Yang G, Wang G, Lu W, et al. Experimental and numerical study of damage characteristics of RC slabs subjected to air and underwater contact explosions[J]. Marine Structures, 2019, 66: 242-257.

[18] Liu Z, Zhao X, Fang H, et al. Investigation on the damage features and dynamic response of reinforced concrete slabs with polyurethane sacrificial cladding under close-range explosions[J]. Construction and Building Materials, 2023, 395: 132149.

[19] Li M, Du M, Wang F, et al. Study on the mechanical properties of polyurethane (PU) grouting material of different geometric sizes under uniaxial compression[J]. Construction and Building Materials, 2020, 259: 119797.

[20] 张勇. 聚氨酯泡沫铝复合结构抗爆吸能试验及数值模拟分析[J]. 爆炸与冲击, 2022, 42(4): 128-138.

引用本文

赵鹏, 赵小华, 雷建伟, 董家修, 冯磊, 马辉, 韩泽军, 李策, 赵浥辰, 高聚物防护下玄武岩纤维混凝土板的动态毁伤特性分析[J]. 工程学研究, 2025; 4: (2) : 188-200.