参考文献 References
[1] Rebelo H B, Cismasiu C. Robustness assessment of a deterministically designed sacrificial cladding for structural protection[J]. Engineering Structures, 2021, 240: 112279.
[2] 杨程风, 闫俊伯, 刘彦, et al. 接触爆炸载荷下波纹钢加固钢筋混凝土板毁伤特征分析[J]. 北京理工大学学报, 2022, 42(5): 453-462.
[3] Cao K, Fu Q, Zhang J, et al. Study on the protection mechanism and damage grade prediction of different corrugated steel‒concrete composite structures under underwater contact explosion[J]. Ocean Engineering, 2024, 292: 116520.
[4] Wang W, Huo Q, Yang J, et al. Damage analysis of POZD coated square reinforced concrete slab under contact blast[J]. Defence Technology, 2022, 18(9): 1715-1726.
[5] Liu Y, Wang P, Jin F, et al. Blast responses of polyurea-coated concrete arches[J]. Archives of Civil and Mechanical Engineering, 2021, 21(1): 30.
[6] Xia Y, Wu C, Liu Z, et al. Protective effect of graded density aluminium foam on RC slab under blast loading – An experimental study[J]. Construction and Building Materials, 2016, 111: 209-222.
[7] Zhou Y, Wang T, Zhu W, et al. Evaluation of blast mitigation effects of hollow cylindrical barriers based on water and foam[J]. Composite Structures, 2022, 282: 115016.
[8] Liu S, Zhao X, Fang H, et al. Study on the protective performance of polymer layer to RC slabs under underwater explosions[J]. Ocean Engineering, 2023, 282: 114997.
[9] Codina R, Ambrosini D, Borbón F. Alternatives to prevent the failure of RC members under close-in blast loadings[J]. Engineering Failure Analysis, 2016, 60: 96-106.
[10] Kostopoulos V, Kalimeris G, Giannaros E. Blast protection of steel reinforced concrete structures using composite foam-core sacrificial cladding[J]. Composites Science and Technology, 2022, 230: 109330.
[11] Zhao H, Yu H, Yuan Y, et al. Blast mitigation effect of the foamed cement-base sacrificial cladding for tunnel structures[J]. Construction and Building Materials, 2015, 94: 710-718.
[12] Ousji H, Belkassem B, Louar M, et al. Air-blast response of sacrificial cladding using low density foams: Experimental and analytical approach[J]. International Journal of Mechanical Sciences, 2017, 128-129: 459-474.
[13] Jamil A, Guan Z, Cantwell W, et al. Blast response of aluminium/thermoplastic polyurethane sandwich panels – experimental work and numerical analysis[J]. International Journal of Impact Engineering, 2019, 127: 31-40.
[14] Riedel W, Kawai N, Kondo K. Numerical assessment for impact strength measurements in concrete materials[J]. International Journal of Impact Engineering, 2009, 36(2): 283-293.
[15] 赵小华, 刘树参, 方宏远, et al. 水下接触爆炸下高聚物层对钢筋混凝土板的防护效果[J]. 爆炸与冲击, 2023, 43(12): 110-124.
[16] Zhao C, Lu X, Wang Q, et al. Experimental and numerical investigation of steel-concrete (SC) slabs under contact blast loading[J]. Engineering Structures, 2019, 196: 109337.
[17] Yang G, Wang G, Lu W, et al. Experimental and numerical study of damage characteristics of RC slabs subjected to air and underwater contact explosions[J]. Marine Structures, 2019, 66: 242-257.
[18] Liu Z, Zhao X, Fang H, et al. Investigation on the damage features and dynamic response of reinforced concrete slabs with polyurethane sacrificial cladding under close-range explosions[J]. Construction and Building Materials, 2023, 395: 132149.
[19] Li M, Du M, Wang F, et al. Study on the mechanical properties of polyurethane (PU) grouting material of different geometric sizes under uniaxial compression[J]. Construction and Building Materials, 2020, 259: 119797.
[20] 张勇. 聚氨酯泡沫铝复合结构抗爆吸能试验及数值模拟分析[J]. 爆炸与冲击, 2022, 42(4): 128-138.