期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

Journal of Engineering Research. 2025; 4: (2) ; 1-5 ; DOI: 10.12208/j.jer.20250041.

Research on detection technology for thermal leakage and wall thickness reduction in steam pipelines
基于红外热成像的非接触式蒸汽管道缺陷智能检测与评估方法研究

作者: 崔凯1, 李维桐1,2, 顾永兵2 *, 李明飞2, 马天富2

1 中国特种设备检验协会 北京

2 宁夏特种设备检验检测研究院 宁夏银川

*通讯作者: 顾永兵,单位: 宁夏特种设备检验检测研究院 宁夏银川;

发布时间: 2025-02-23 总浏览量: 28

摘要

针对蒸汽管道热泄漏与壁厚减薄的安全检测难题,研究提出基于红外热成像的非接触式智能检测方法。通过融合多源数据与先进的机器学习算法,构建热泄漏强度、温度场分布与壁厚减薄之间的关联模型并采用自适应算法补偿环境干扰,显著提高检测鲁棒性。创新建立包含热图特征、温度梯度及材质衰减的综合评估体系,实现对管道缺陷的精准识别与量化分析方法。实验表明,该方法在电站核心管路的早期缺陷预警中表现出色,检测效率较传统方法提升40%以上,成本降低约35%。研究成果不仅为蒸汽管道安全检测提供新型技术解决方案,对推动工业无损检测向智能化方向发展,具有显著的工程应用价值与学术拓展空间。

关键词: 蒸汽管道;热泄漏;壁厚减薄;热成像技术;机器学习

Abstract

To address the safety inspection challenges of steam pipeline thermal leakage and wall thickness reduction, this study proposes a non-contact intelligent detection method based on infrared thermography. By integrating multi-source data with advanced machine learning algorithms, an association model linking thermal leakage intensity, temperature field distribution, and wall thickness reduction is constructed. Additionally, an adaptive algorithm is employed to compensate for environmental interference, significantly enhancing detection robustness. An innovative comprehensive evaluation system incorporating thermal pattern features, temperature gradients, and material attenuation is established to achieve precise identification and quantitative analysis of pipeline defects. Experiments demonstrate that this method performs exceptionally in early defect warning for core pipelines in power stations, with detection efficiency improved by over 40% and costs reduced by approximately 35% compared to traditional methods. The research findings not only provide novel technical solutions for steam pipeline safety inspection but also drive the development of industrial non-destructive testing towards intelligence, possessing significant engineering application value and academic expansion potential. igence, offering significant engineering application value and academic expansion potential.

Key words: Steam pipelines; Thermal leakage; Wall thickness reduction; Thermal imaging technology; Machine learning

参考文献 References

[1] 张杨,林超,吴洁.浅论输送管道泄漏检测及其方法[J].中国石油和化工标准与质量,2011,31(09):221.

[2] 陈春刚,王毅,杨振坤.长输油气管道泄漏检测技术综述[J].石油与天然气化工,2002,(01):52-54+0.

[3] 晏泽晨,陈婷,金波,等.加氢裂化高压管道监测技术探讨[J].化工管理,2024,(13):67-69.

[4] 徐火力.红外热像检测技术在热力管道年度检查中的应用[J].能源与环境,2019,(01):38-39.

[5] 郭燕,丁亚军,钱盛友,等.基于BEMD与随机森林算法的HIFU治疗无损测温方法[J].测试技术学报,2018,32(06): 487-492.

[6] 郭龙,郭文文.基于SVR和随机森林模型的动力煤高位发热量预测研究[J].能源工程,2024,44(01):35-42.

[7] 岳仁田,韩娜,赵嶷飞.基于练习数据的管制席健康状态聚类分析及预测[J].安全与环境学报,2020,20(05):1782-1787.

[8] 曹丽斐,苏义坤,王富强,等.工业化建筑标准体系项目评估指标体系[J].土木工程与管理学报,2019,36(03):164-169+176.

[9] 钱淑霞,于彦华,吴春岩,等.地方农业院校专业评估指标体系构建的探索与实践[J].黑龙江畜牧兽医,2016, (02): 16-18.

[10] 梁磊,李永树.基于GIS的动态指标管理在管道风险评价中的应用[J].油气储运,2012,31(01):13-16+81-82.

引用本文

崔凯, 李维桐, 顾永兵, 李明飞, 马天富, 基于红外热成像的非接触式蒸汽管道缺陷智能检测与评估方法研究[J]. 工程学研究, 2025; 4: (2) : 1-5.