参考文献 References
[1] Xie G, Zhang X, Gao H, et al. Situational assessments based on uncertainty-risk awareness in complex traffic scenarios[J]. Sustainability, 2017, 9(9): 1582.
[2] 刘秀红,姜圣.基于自动驾驶的车辆安全技术应用探讨[J].时代汽车, 2023(6):175-177.
[3] 李克强,戴一凡,李升波等.智能网联汽车(ICV)技术的发展现状及趋势[J].汽车安全与节能学报,2017,8(01):1-14.
[4] 吕璐,程虎,朱鸿泰等.基于深度学习的目标检测研究与应用综述[J].电子与封装,2022,22(01):72-80.
[5] 郑少武,李巍华,胡坚耀.基于激光点云与图像信息融合的交通环境车辆检测[J].仪器仪表学报,2019,40(12): 143-151.
[6] 张银,任国全,程子阳,孔国杰.三维激光雷达在无人车环境感知中的应用研究[J].激光与光电子学进展,2019, 56(13):1-11.
[7] 叶语同,李必军,付黎明.智能驾驶中点云目标快速检测与跟踪[J].武汉大学(信息科学版),2019,44(01):139-144+152.
[8] 王刚,王沛.基于深度学习的三维目标检测方法研究[J].计算机应用与软件,2020,37(12):164-168.
[9] Qi C R, Su H, Mo K, et al. Pointnet: Deep learning on point sets for 3d classification and segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 652-660.
[10] Qi C R, Yi L, Su H, et al. Pointnet++: Deep hierarchical feature learning on point sets in a metric space[J]. Advances in neural information processing systems, 2017, 30.
[11] Qi C R, Liu W, Wu C, et al. Frustum pointnets for 3d object detection from rgb-d data[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 918-927.
[12] Shi S, Wang X, Li H. Pointrcnn: 3d object proposal generation and detection from point cloud[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 770-779.
[13] Tang Q, Bai X, Guo J, et al. DFAF3D: A dual-feature-aware anchor-free single-stage 3D detector for point clouds[J]. Image and Vision Computing, 2023, 129: 104594.
[14] 周燕,蒲磊,林良熙,et al.激光点云的三维目标检测研究进展[J].计算机科学与探索, 2022, 16(12):23.
[15] Zhou Y, Tuzel O. Voxelnet: End-to-end learning for point cloud based 3d object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 4490-4499.
[16] Yan Y, Mao Y, Li B. Second: Sparsely embedded convolutional detection[J]. Sensors, 2018, 18(10): 3337.
[17] Lang A H, Vora S, Caesar H, et al. Pointpillars: Fast encoders for object detection from point clouds[C] //Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 12697-12705.
[18] Zhou S, Tian Z, Chu X, et al. FastPillars: a deployment-friendly pillar-based 3D detector[J]. arXiv preprint arXiv:2302.02367, 2023.
[19] Shi S, Guo C, Jiang L, et al. Pv-rcnn: Point-voxel feature set abstraction for 3d object detection[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 10529-10538.
[20] Deng J, Shi S, Li P, et al. Voxel r-cnn: Towards high performance voxel-based 3d object detection[C]// Proceedings of the AAAI conference on artificial intelligence. 2021, 35(2): 1201-1209.
[21] Liu Z, Tang H, Lin Y, et al. Point-voxel CNN for efficient 3D deep learning[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems. 2019: 965-975.
[22] Liu Z, Lin Y, Cao Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2021: 10012-10022.
[23] Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 2117-2125.
[24] Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE international conference on computer vision. 2017: 2980-2988.
[25] Shannon C E. A mathematical theory of communication[J]. The Bell system technical journal, 1948, 27(3): 379-423.
[26] Geiger A, Lenz P, Urtasun R. Are we ready for autonomous driving? the kitti vision benchmark suite[C]//2012 IEEE conference on computer vision and pattern recognition. IEEE, 2012: 3354-3361.
[27] Ku J, Mozifian M, Lee J, et al. Joint 3d proposal generation and object detection from view aggregation[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 1-8.
[28] Zhao X, Liu Z, Hu R, et al. 3D object detection using scale invariant and feature reweighting networks[C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2019, 33(01): 9267-9274.
[29] Yoo J H, Kim Y, Kim J, et al. 3d-cvf: Generating joint camera and lidar features using cross-view spatial feature fusion for 3d object detection[C]//Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXVII 16. Springer International Publishing, 2020: 720-736.
[30] Huang T, Liu Z, Chen X, et al. Epnet: Enhancing point features with image semantics for 3d object detection[C]//Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XV 16. Springer International Publishing, 2020: 35-52.
[31] Chen X, Ma H, Wan J, et al. Multi-view 3d object detection network for autonomous driving[C]//Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2017: 1907-1915.
[32] Liang M, Yang B, Wang S, et al. Deep continuous fusion for multi-sensor 3d object detection[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 641-656.
[33] Pang S, Morris D, Radha H. CLOCs: Camera-LiDAR object candidates fusion for 3D object detection[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020: 10386-10393.
[34] He C, Zeng H, Huang J, et al. Structure aware single-stage 3d object detection from point cloud[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 11873-11882.
[35] Hu J S K, Kuai T, Waslander S L. Point density-aware voxels for lidar 3d object detection[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022: 8469-8478.
[36] Guan T, Wang J, Lan S, et al. M3detr: Multi-representation, multi-scale, mutual-relation 3d object detection with transformers[C]//Proceedings of the IEEE/CVF winter conference on applications of computer vision. 2022: 772-782.
[37] Yang H, He T, Liu J, et al. GD-MAE: generative decoder for MAE pre-training on lidar point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023: 9403-9414.