期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

Journal of Engineering Research. 2025; 4: (2) ; 27-33 ; DOI: 10.12208/j.jer.20250045.

Remaining useful life prediction for highway mechanical and electrical facilities using fuzzy similarity and evidence theory
少数据样本下公路机电设施剩余使用寿命预测

作者: 王强1, 胡永恺1 *, 钱威1, 温林1, 王亚楠2

1 江苏宁沪高速公路股份有限公司 江苏南京

2 招商局重庆交通科研设计院有限公司 重庆

*通讯作者: 胡永恺,单位: 江苏宁沪高速公路股份有限公司 江苏南京;

发布时间: 2025-02-25 总浏览量: 23

摘要

针对基于少量且没有明显规律的数据样本,难以准确预测公路机电设施剩余使用寿命(RUL)的问题,提出一种联合模糊相似性方法与证据理论的RUL预测方法。采用模糊相似性方法根据机电设施退化过程之间的相似性对RUL进行直接估算,同时充分利用证据理论在处理不确定性信息方面的优势,通过基本概率分配来表示RUL预测结果的置信度,以处理退化过程的复杂性和不确定性问题。在公路机电设施的试验结果表明:所提方法相比于核密度估计(KDE)和均值方差估计(MVE)方法,在处理预测不确定性的有效性,以及得到预测区间的可靠性和精度具有优势。

关键词: 机电;剩余使用寿命预测;不确定性;模糊相似性;证据理论

Abstract

A remaining useful life (RUL) prediction method combining fuzzy similarity method and evidence theory is proposed to address the problem of accurately predicting the RUL of mechanical and electrical facilities in highway based on a small number of data samples without obvious patterns. Adopting the fuzzy similarity method to directly estimate RUL based on the similarity between the degradation processes of electromechanical facilities, while fully utilizing the advantages of evidence theory in handling uncertain information, the confidence level of RUL prediction results is represented through basic probability al-location to deal with the complexity and uncertainty of the degradation process. The ex-perimental results of mechanical and electrical facilities in highway show that the pro-posed method has advantages over kernel density estimation (KDE) and mean variance estimation (MVE) methods in dealing with prediction uncertainty, as well as reliability and accuracy in obtaining prediction intervals.

Key words: Mechanical and electrical; Remaining useful life prediction; Uncertainty; Fuzzy similarity; Evidence theory

参考文献 References

[1] Wang D, Tsui K L, Miao Q. Prognostics and Health Management: A Review of Vibration Based Bearing and Gear Health Indicators[J]. IEEE Access, 2018, 6: 665-676.

[2] Lee J, Wu F, Zhao W, et al. Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications[J]. Mechanical systems and signal processing, 2014, 42(1-2): 314-334.

[3] Lei Y, Li N, Guo L, et al. Machinery health prognostics: A systematic review from data acquisition to RUL prediction[J]. Mechanical systems and signal processing, 2018, 104: 799-834.

[4] Zhang Z, Si X, Hu C, et al. Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods[J]. European Journal of Operational Research, 2018, 271(3): 775-796.

[5] Kan M S, Tan A C C, Mathew J. A review on prognostic techniques for non-stationary and non-linear rotating systems[J]. Mechanical Systems and Signal Processing, 2015, 62: 1-20.

[6] Paris P, Erdogan F. A critical analysis of crack propagation laws[J]. 1963.

[7] Li Y, Billington S, Zhang C, et al. Adaptive prognostics for rolling element bearing condition[J]. Mechanical systems and signal processing, 1999, 13(1): 103-113.

[8] Wang J, Gao R X, Yuan Z, et al. A joint particle filter and expectation maximization approach to machine condition prognosis[J]. Journal of Intelligent Manufacturing, 2019, 30: 605-621.

[9] Baraldi P, Mangili F, Zio E. A Kalman filter-based ensemble approach with application to turbine creep prognostics[J]. IEEE Transactions on Reliability, 2012, 61(4): 966-977.

[10] Chan K S, Enright M P, Moody J P, et al. Life prediction for turbopropulsion systems under dwell fatigue conditions[J]. Journal of engineering for gas turbines and power, 2012, 134(12): 122501.

[11] Fagogenis G, Flynn D, Lane D. Novel RUL prediction of assets based on the integration of auto-regressive models and an RUSBoost classifier[C]//2014 International Conference on Prognostics and Health Management. IEEE, 2014: 1-6.

[12] Pang C K, Zhou J H, Yan H C. PDF and breakdown time prediction for unobservable wear using enhanced particle filters in precognitive maintenance[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 64(3): 649-659.

[13] Lu C J, Meeker W O. Using degradation measures to estimate a time-to-failure distribution[J]. Technometrics, 1993, 35(2): 161-174.

[14] 万昌豪, 刘志国, 唐圣金, 等. 基于不完美先验信息的随机系数回归模型剩余寿命预测方法[J]. 北京航空航天大学学报, 2021, 47(12): 2542-2551.

[15] Kharoufeh J P, Solo C J, Ulukus M Y. Semi-Markov models for degradation-based reliability[J]. IIE Transactions, 2010, 42(8): 599-612.

[16] 刘勤明, 李亚琴, 吕文元, 等. 基于自适应隐式半马尔可夫模型的设备健康诊断与寿命预测方法[J]. 计算机集成制造系统, 2016, 22(第 9): 2187.

[17] 徐敬勃, 谭学谦, 吴珍, 等. 基于维纳过程退化模型的动量轮寿命预测与分析[J]. 空间科学学报, 2019, 39(3): 388-398.

[18] Wang H, Liao H, Ma X, et al. Remaining useful life prediction and optimal maintenance time determination for a single unit using isotonic regression and gamma process model[J]. Reliability Engineering & System Safety, 2021, 210: 107504.

[19] 王艺斐, 苏春, 谢明江. 基于二元逆高斯过程的腐蚀输油管道剩余寿命预测[J]. 东南大学学报, 2020, 50(6).

[20] 李杰其, 胡良兵. 基于机器学习的设备预测性维护方法综述[J]. 计算机工程与应用, 2020, 56(21): 11-19.

[21] 马忠, 郭建胜, 顾涛勇, 等. 基于改进卷积神经网络的航空发动机剩余寿命预测[J]. 空军工程大学学报 (自然科学版), 2020, 21(6): 19-25.

[22] 张成龙, 刘杰, 李想. 基于改进 PSO-SVR 的多轴承健康寿命协同预测[J]. 机床与液压, 2020, 48(16): 206-211.

[23] Zio E, Di Maio F. A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system[J]. Reliability Engineering & System Safety, 2010, 95(1): 49-57.

[24] Nystad B H. Condition-Based Maintenance (CBM)–filter clogging at OKG 1, a case study, HWR-961[J]. 2009.

引用本文

王强, 胡永恺, 钱威, 温林, 王亚楠, 少数据样本下公路机电设施剩余使用寿命预测[J]. 工程学研究, 2025; 4: (2) : 27-33.