参考文献 References
[1] Wang D, Tsui K L, Miao Q. Prognostics and Health Management: A Review of Vibration Based Bearing and Gear Health Indicators[J]. IEEE Access, 2018, 6: 665-676.
[2] Lee J, Wu F, Zhao W, et al. Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications[J]. Mechanical systems and signal processing, 2014, 42(1-2): 314-334.
[3] Lei Y, Li N, Guo L, et al. Machinery health prognostics: A systematic review from data acquisition to RUL prediction[J]. Mechanical systems and signal processing, 2018, 104: 799-834.
[4] Zhang Z, Si X, Hu C, et al. Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods[J]. European Journal of Operational Research, 2018, 271(3): 775-796.
[5] Kan M S, Tan A C C, Mathew J. A review on prognostic techniques for non-stationary and non-linear rotating systems[J]. Mechanical Systems and Signal Processing, 2015, 62: 1-20.
[6] Paris P, Erdogan F. A critical analysis of crack propagation laws[J]. 1963.
[7] Li Y, Billington S, Zhang C, et al. Adaptive prognostics for rolling element bearing condition[J]. Mechanical systems and signal processing, 1999, 13(1): 103-113.
[8] Wang J, Gao R X, Yuan Z, et al. A joint particle filter and expectation maximization approach to machine condition prognosis[J]. Journal of Intelligent Manufacturing, 2019, 30: 605-621.
[9] Baraldi P, Mangili F, Zio E. A Kalman filter-based ensemble approach with application to turbine creep prognostics[J]. IEEE Transactions on Reliability, 2012, 61(4): 966-977.
[10] Chan K S, Enright M P, Moody J P, et al. Life prediction for turbopropulsion systems under dwell fatigue conditions[J]. Journal of engineering for gas turbines and power, 2012, 134(12): 122501.
[11] Fagogenis G, Flynn D, Lane D. Novel RUL prediction of assets based on the integration of auto-regressive models and an RUSBoost classifier[C]//2014 International Conference on Prognostics and Health Management. IEEE, 2014: 1-6.
[12] Pang C K, Zhou J H, Yan H C. PDF and breakdown time prediction for unobservable wear using enhanced particle filters in precognitive maintenance[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 64(3): 649-659.
[13] Lu C J, Meeker W O. Using degradation measures to estimate a time-to-failure distribution[J]. Technometrics, 1993, 35(2): 161-174.
[14] 万昌豪, 刘志国, 唐圣金, 等. 基于不完美先验信息的随机系数回归模型剩余寿命预测方法[J]. 北京航空航天大学学报, 2021, 47(12): 2542-2551.
[15] Kharoufeh J P, Solo C J, Ulukus M Y. Semi-Markov models for degradation-based reliability[J]. IIE Transactions, 2010, 42(8): 599-612.
[16] 刘勤明, 李亚琴, 吕文元, 等. 基于自适应隐式半马尔可夫模型的设备健康诊断与寿命预测方法[J]. 计算机集成制造系统, 2016, 22(第 9): 2187.
[17] 徐敬勃, 谭学谦, 吴珍, 等. 基于维纳过程退化模型的动量轮寿命预测与分析[J]. 空间科学学报, 2019, 39(3): 388-398.
[18] Wang H, Liao H, Ma X, et al. Remaining useful life prediction and optimal maintenance time determination for a single unit using isotonic regression and gamma process model[J]. Reliability Engineering & System Safety, 2021, 210: 107504.
[19] 王艺斐, 苏春, 谢明江. 基于二元逆高斯过程的腐蚀输油管道剩余寿命预测[J]. 东南大学学报, 2020, 50(6).
[20] 李杰其, 胡良兵. 基于机器学习的设备预测性维护方法综述[J]. 计算机工程与应用, 2020, 56(21): 11-19.
[21] 马忠, 郭建胜, 顾涛勇, 等. 基于改进卷积神经网络的航空发动机剩余寿命预测[J]. 空军工程大学学报 (自然科学版), 2020, 21(6): 19-25.
[22] 张成龙, 刘杰, 李想. 基于改进 PSO-SVR 的多轴承健康寿命协同预测[J]. 机床与液压, 2020, 48(16): 206-211.
[23] Zio E, Di Maio F. A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system[J]. Reliability Engineering & System Safety, 2010, 95(1): 49-57.
[24] Nystad B H. Condition-Based Maintenance (CBM)–filter clogging at OKG 1, a case study, HWR-961[J]. 2009.