参考文献 References
[1] Dorigo M, Theraulaz G, Trianni V. Swarm robotics: Past, present, and future [point of view][J]. Proceedings of the IEEE, 2021, 109(7): 1152-1165.
[2] Zhen Z, Chen Y, Wen L, et al. An intelligent cooperative mission planning scheme of UAV swarm in uncertain dynamic environment[J]. Aerospace Science and Technology, 2020, 100: 105826.
[3] Ferrer E C, Hardjono T, Pentland A, et al. Secure and secret cooperation in robot swarms[J]. Science Robotics, 2021, 6(56): eabf1538.
[4] Zhou Y, Chen A, Zhang H, et al. Multitarget search of swarm robots in unknown complex environments[J]. Complexity, 2020, 2020(1): 8643120.
[5] Du Y. A novel approach for swarm robotic target searches based on the DPSO algorithm[J]. IEEE Access, 2020, 8: 226484-226505.
[6] Xu L, Cao X, Du W, et al. Cooperative path planning optimization for multiple UAVs with communication constraints[J]. Knowledge-Based Systems, 2023, 260: 110164.
[7] 夏清松, 唐秋华, 张利平. 多仓储机器人协同路径规划与作业避碰[J]. 信息与控制, 2019, 48(1): 22-28, 34.
[8] Duan H, Huo M, Fan Y. From animal collective behaviors to swarm robotic cooperation[J]. National Science Review, 2023, 10(5): nwad040.
[9] Song Y, Fang X, Liu B, et al. A novel foraging algorithm for swarm robotics based on virtual pheromones and neural network[J]. Applied Soft Computing, 2020, 90: 106156.
[10] Zhou W, Liu Z, Li J, et al. Multi-target tracking for unmanned aerial vehicle swarms using deep reinforcement learning[J]. Neurocomputing, 2021, 466: 285-297.
[11] 成永盛,王强.一种基于遗传算法的协同搜索方法[J].信息技术与信息化,2023,(12):52-55.
[12] Garg V, Shukla A, Tiwari R. AERPSO—An adaptive exploration robotic PSO based cooperative algorithm for multiple target searching[J]. Expert Systems with Applications, 2022, 209: 118245.
[13] Saadaoui H, El Bouanani F, Illi E. Information sharing based on local PSO for UAVs cooperative search of moved targets[J]. Ieee Access, 2021, 9: 134998-135011.
[14] Wei C, Ji Z, Cai B. Particle swarm optimization for cooperative multi-robot task allocation: a multi-objective approach[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 2530-2537.
[15] Tang H, Sun W, Yu H, et al. A novel hybrid algorithm based on PSO and FOA for target searching in unknown environments[J]. Applied Intelligence, 2019, 49: 2603-2622.
[16] Yang J, Xiong R, Xiang X, et al. Exploration enhanced RPSO for collaborative multitarget searching of robotic swarms[J]. Complexity, 2020, 2020(1): 8863526.
[17] Wang X, Fang X. A multi-agent reinforcement learning algorithm with the action preference selection strategy for massive target cooperative search mission planning[J]. Expert Systems with Applications, 2023, 231: 120643.
[18] 吴昌友, 付熙松, 裴均珂. 基于信息共享搜索策略的自适应灰狼算法研究[J]. 电光与控制, 2022, 29(07): 22-28.
[19] 谢永盛, 曾箫潇, 冯文健. 改进布谷鸟搜索算法在多机器人任务分配及路径规划中的应用[J]. 计算机应用与软件, 2021, 38(02): 285-290.
[20] Fei B, Bao W, Zhu X, et al. Autonomous cooperative search model for multi-UAV with limited communication network[J]. IEEE Internet of Things Journal, 2022, 9(19): 19346-19361.
[21] 王茂, 周少武, 张红强, 等. 未知环境下群机器人多目标搜索协同控制[J]. Control Theory & Applications/ Kongzhi Lilun Yu Yinyong, 2022, 39(4).
[22] Xu W, Chen X, Zhao J, et al. Function-segment artificial moment method for sensor-based path planning of single robot in complex environments[J]. Information Sciences, 2014, 280: 64-81.
[23] 徐望宝, 孙明炎. 群机器人自组织围捕多个入侵者的链阵方法[J]. Control Theory & Applications/Kongzhi Lilun Yu Yinyong, 2023, 40(1).
[24] 徐望宝, 荣根熙, 祝超超, 等. 群机器人复杂搬运队形形成的人工社会职位法[J]. 信息与控制, 2016, 45(6): 647-652.
[25] 董百超, 徐望宝, 张笑笑. 群机器人狭窄通道相遇问题的解决方法[J]. 科学技术与工程, 2017, 17(19): 60-64.
[26] 徐望宝. 移动机器人局部路径规划的人工力矩方法[D]. 大连: 大连理工大学, 2014.