参考文献 References
[1] Van, Brummelen, Jessica, et al. Autonomous vehicle perception: The technology of today and tomorrow[J]. Transportation Research Part C Emerging Technologies, 2018.
[2] Che E, Jung J, Olsen M. Object Recognition, Segmentation, and Classification of Mobile Laser Scanning Point Clouds: A State of the Art Review[J]. Sensors, 2019, 19(4).
[3] Husain A, Vaishya R. A time efficient algorithm for ground point filtering from mobile lidar data. In Proceedings of the 2016 International Conference on Control, Computing, Communication and Materials (ICCCCM), Allahabad, India, 21–22 October 2016; pp. 1–5.
[4] Yadav M, Singh A. K, Lohani, B. Extraction of road surface from mobile lidar data of complex road environment. Int. J. Remote Sens. 2017, 38, 4655–4682.
[5] Wang G, Wu J, He R, et al. A point cloud-based robust road curb detection and tracking method[J]. IEEE Access, 2019, 7: 24611-24625.
[6] Kang Y. A lidar-Based Decision-Making Method for Road Boundary Detection Using Multiple Kalman Filters[J]. Industrial Electronics, IEEE Transactions on, 2012, 59(11):p.4360-4368.
[7] Cosgun A, Ma L, Chiu J, et al. Towards Full Automated Drive in Urban Environments: A Demonstration in GoMentum Station, California[C] 2017 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2017.
[8] Yadav M, Singh A K, Lohani B. Extraction of road surface from mobile lidar data of complex road environment[J]. International Journal of Remote Sensing, 2017, 38(16): 4655-4682.
[9] Guo Y, Wang H, Hu Q, et al. Deep learning for 3d point clouds: A survey[J]. arXiv preprint arXiv:1912.12033, 2019.
[10] Qi C R, Su H, Mo K, et al. Pointnet: Deep learning on point sets for 3d classification and segmentation[C]. Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 652-660.
[11] Qi C R, Yi L, Su H, et al. Pointnet++: Deep hierarchical feature learning on point sets in a metric space[C]. Advances in neural information processing systems. 2017: 5099-5108.
[12] Li Y, Bu R, Sun M, et al. Pointcnn: Convolution on x-transformed points[C]. Advances in neural information processing systems. 2018: 820-830.
[13] Maturana D, Scherer S. Voxnet: A 3d convolutional neural network for real-time object recognition[C]. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2015: 922-928.
[14] Liu Y, Fan B, Xiang S, et al. Relation-shape convolutional neural network for point cloud analysis[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 8895-8904.
[15] Ronneberger O, Fischer P, Brox T, U-Net: Convolutional Networks for Biomedical Image Segmentation[C] International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer International Publishing, 2015.
[16] Long J, Shelhamer E, Darrell T, Fully Convolutional Networks for Semantic Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4):640-651.
[17] Hu K, Wang T, Li Z, et al. Real-time extraction method of road boundary based on three-dimensional lidar[J]. J. Phys, 2018, 1074: 012080.
[18] Zhang Y, Wang J, Wang X, et al. 3d lidar-based intersection recognition and road boundary detection method for unmanned ground vehicle[C]. 2015 IEEE 18th International Conference on Intelligent Transportation Systems. IEEE, 2015: 499-504.
[19] Yadav M, Singh A K, Lohani B. Extraction of road surface from mobile lidar data of complex road environment[J]. International Journal of Remote Sensing, 2017, 38(16): 4655-4682.
[20] Chen Z, Zhang J, Tao D. Progressive lidar adaptation for road detection[J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6(3): 693-702.
[21] Han X, Lu J, Zhao C, et al. Semisupervised and weakly supervised road detection based on generative adversarial networks[J]. IEEE Signal Processing Letters, 2018, 25(4): 551-555.
[22] Roynard X, JE Deschaud, Goulette F. Paris-Lille-3D: A Point Cloud Dataset for Urban Scene Segmentation and Classification[C] 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2018.
[23] Wang Y, Sun Y, Liu Z, et al. Dynamic Graph CNN for Learning on Point Clouds[J]. ACM Transactions on Graphics, 2018, 38(5).
[24] Zhang C, Luo W, Urtasun R, Efficient Convolutions for Real-Time Semantic Segmentation of 3D Point Clouds[C] 2018:399-408.
[25] Lang A H, Vora S, Caesar H, et al. PointPillars: Fast Encoders for Object Detection from Point Clouds[J]. 2018.
[26] Berman M, Triki A R, Blaschko M B, The Lovasz-Softmax Loss: A Tractable Surrogate for the Optimization of the Intersection-Over-Union Measure in Neural Networks[C] 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2018.
[27] Lawin F J, Danelljan M, Tosteberg P, et al. Deep Projective 3D Semantic Segmentation[C] International Conference on Computer Analysis of Images and Patterns. Springer, Cham, 2017.
[28] Rethage D, Wald J, Sturm J, et al. Fully-Convolutional Point Networks for Large-Scale Point Clouds[J]. Springer, Cham, 2018.
[29] Thomas H, Qi C R, Deschaud J E, et al. KPConv: Flexible and Deformable Convolution for Point Clouds[C] 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2020.
[30] Liang Z, Yang M, Deng L, et al. Hierarchical Depthwise Graph Convolutional Neural Network for 3D Semantic Segmentation of Point Clouds[C] 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019.
[31] 张旻昊, 无人机激光雷达智能识别输电线路缺陷探究[J]. 工程学研究, 2022; 1: (5) : 77-80.
[32] 朱凯, 电动汽车技术革新与交通工程变革的深度融合[J]. 工程学研究, 2024; 3: (2) : 29-38.